
Icon Bar Sprite Pools
Andrea Gallo
Although it is not documented in the User Guide, it is
possible to place sprites from the Wimp�s sprite pool onto
the icon bar using calls such as baricon(). All that is
needed is to give a sprite area pointer as 1, rather than the
actual address of a sprite area.

File Handling
David Spencer
Whilst using the file manipulation operations provided by
stdio.h ensures that your code will be as portable as
possible, these functions are relatively slow, and inflexible.
For serious desktop applications (which are very unlikely
to be ported anyway) you are better off using the calls
provided by kernel.h to interface with RISC OS directly.

kernel swis and their Errors
Lee Calcraft
The approved way of performing swi calls is to make use
of the kernel library (in Clib) rather than the Risc_OSLib os
library. There are no handy packaged functions for making
swi calls in kernel, but it is easy to use something like the
following, which takes just four parameters - the swi
number and a pointer to the values to be placed in r0, r1
and r2. The return values are then written directly into the
three variables used by the calling function.
_kernel_oserror *swi_3(int swi_no,int *r0,int *r1,int *r2)
{

_kernel_swi_regs r;
_kernel_oserror *e;

r.r[0]=*r0;
r.r[1]=*r1;
r.r[2]=*r2;
if ((e=_kernel_swi(swi_no,&r,&r))==0)
{
*r0=r.r[0];
*r1=r.r[1];
*r2=r.r[2];
}
return e;

}
This is all pretty straighforward, but there is a problem
when you come to interface it to the Wimp�s error handling
functions. For example, you cannot use:

wimpt_complain(swi_3(swi_no,&r0,&r1,&r2));

because wimpt_complain() is expecting a pointer to an
os_error, while our function returns a _kernel_oserror
pointer. In fact, these two structures are identical, and all
you need to do is to cast one pointer to the other:

wimpt_complain((os_error*)\
swi_3(swi_no,&r0,&r1,&r2));

Handling Shutdowns
Andrea Gallo
A quirk of RISC OS is that if an application objects to the
computer being shutdown by claiming the PreQuit
message when it is received, then it must later restart the
shutdown procedure by simulating Shift-Control-F12 being
pressed. The PRM suggests doing this by sending a Wimp
message, but by far the easiest way to do it in C is to
issue the call:

wimpt_complain(wimp_processkey(0x1fc));

Array Sizing
Lee Calcraft
The sizeof operator can be very handy for determining the
size of an array that you have filled at the time of
declaration. For example, suppose you write the following:

int my_array[]={199,2,44,992,790...etc};

If you are using a #defined value MAX_SIZE to hold the
maximum size of the array, it is only too easy to increase
the number of entries at a later date without adjusting
MAX_SIZE.

However, you can automate the process by defining
MAX_SIZE as follows (on any line after you have declared
the array):
#define MAX_SIZE sizeof(my_array)/sizeof(int)

Using Assembler in C
David Spencer
If you are using the ObjAsm assembler to code functions
in assembler, then it is absolutely vital that they obey the
ARM Procedure Call Standard (APCS) which is
documented in the Assembler User Guide. If you don�t
then weird and wonderful bugs caused by unexpected
register corruption can result. Similarly, the stack limit
checking mentioned in the APCS documentation should
also be included to ensure robust code.

Please send us your C hints, and technical

RISC User October 1994 l 51

REGULA

David Spencer rounds
up some more C hints

C Notebook


